

Montage- und Wartungsanleitung LTD/CDC

Drehverbindung mit integriertem Direktantrieb Typ LTD/CDC

Inhalt

1	Allger	neines	4
2	Aufba	u und Funktion	4
3	Siche	rheit	4
	3.1	Bestimmungsgemäße Verwendung	4
	3.2	Gefahrenquellen	5
	3.3	Schutzmaßnahmen	6
	3.4	Qualifikation des Personals	7
4	Monta	age der Drehverbindung mit Direktantrieb	7
5	Inbetr	iebnahme Direktantrieb	7
6	Elektr	ische Anschlüsse	8
	6.1	Steckerbelegung Motor	8
	6.2	Steckerbelegung Messsystem	9
	6.3	Temperatursensor	9
7	Hinwe	eise zum Betrieb	11
8	Exzer	ntrische Lasten	11
9	Wartu	ing	12
	9.1	Sicherheitshinweis zur Wartung	12
	9.2	Reinigung	13
	9.3	Nachschmierung	13
	9.4	Verschraubungen nachziehen	15
	9.5	Anzugsmomente Schrauben	15
	9.6	Wartung Motor	15
10		rung für den Einbau einer unvollständigen Masch	nine 16
	10.1	Anhang zur Erklärung für den Einbau einer unvollständigen Maschine	17
11	Anhai	ng	18

Inhalt

Information zu dieser Anleitung

Diese Anleitung ermöglicht den sicheren und effizienten Umgang mit den Drehverbindungen mit integriertem Direktantrieb. Die Anleitung ist Bestandteil der Drehverbindung und muss in unmittelbarer Nähe der Maschine, in der die Drehverbindung verbaut ist, für das Personal jederzeit zugänglich aufbewahrt werden.

Das Personal muss diese Anleitung vor Beginn aller Arbeiten sorgfältig durchgelesen und verstanden haben. Grundvoraussetzung für sicheres Arbeiten ist die Einhaltung aller angegebenen Sicherheitshinweise und Handlungsanweisungen in dieser Anleitung.

Darüber hinaus gelten die örtlichen Arbeitsschutzvorschriften und allgemeinen Sicherheitsbestimmungen für den Einsatzbereich der Drehverbindung.

Kundenservice

Franke GmbH, Obere Bahnstraße 64

73431 Aalen, Germany Phone: +49 7361 920-0 Fax: +49 7361 920-120 Email: info@franke-gmbh.de Internet: www.franke-gmbh.de

Copyright

Die Inhalte dieser Anleitung sind urheberrechtlich geschützt. Ihre Verwendung ist im Rahmen der Nutzung der Drehverbindung zulässig. Eine darüber hinausgehende Verwendung ist ohne schriftliche Genehmigung von der Franke GmbH nicht gestattet.

Sicherheit

1 Allgemeines

Dieses Dokument ist Bestandteil des Produkts und enthält wichtige Hinweise zu Montage, Betrieb und Wartung. Es wendet sich an Personen, die Montage, Installation, Inbetriebnahme und Wartungsarbeiten an diesem Produkt ausführen. Diese Anleitung muss allen in einem gut leserlichen Zustand zugänglich gemacht werden.

2 Aufbau und Funktion

Die Drehverbindung mit integriertem Direktantrieb ist eine Antriebseinheit, die Anwendung findet im Handlingsbereich, Transferlinien, Rundtakttischen und in der allgemeinen Automation.

Die Drehverbindung mit Direktantrieb besteht aus:

- Stator, in dem die Wicklung des Torquemotors (3-Phasen Synchronmotor) integriert ist
- Rotor, der mit Permanentmagneten bestückt ist
- ggf. Messsystem, welches die Istposition des Rotors erfasst

Die Abmessungen und technischen Daten der jeweiligen Ausführung (LTD100, LTD215, LTD320 oder LTD385) entnehmen Sie bitte dem Anhang bzw. unserer Homepage unter www.franke-gmbh.de oder bei kundenspezifischer Ausführung, der zur Verfügung gestellten Zeichnung.

3 Sicherheit

3.1 Bestimmungsgemäße Verwendung

Die Drehverbindung mit integriertem Direktantrieb sind ausschließlich für gewerbliche Anwendungen bestimmt. Diese dürfen ausschließlich im industriellen Umfeld eingesetzt werden.

Die Drehverbindung mit Direktantrieb des Typs LTD/CDC ist eine "unvollständige Maschine" im Sinne der EG-Maschinenrichtlinie 2006/42/EG. Die Inbetriebnahme darf nur erfolgen, wenn zuvor sichergestellt wurde, dass die Maschine, in die sie eingebaut ist den gesetzlichen Bestimmungen bzgl. der Sicherheit von Personen genügt (insbesondere der EG-Maschinenrichtlinie 2006/42/EG) und die Maschine die EMV-Richtlinie 2014/30/EU einhält.

3.2 Gefahrenquellen

GEFAHR

Führen Sie alle Arbeiten an der Drehverbindung nur bei abgeschalteter Maschine durch und stellen Sie sicher, dass keine Spannung am Torquemotor anliegt.

WARNUNG

Scharfe Kanten können zu Schnittverletzungen führen. Arbeitshandschuhe tragen!

GEFAHR

Die Oberflächentemperatur der Drehverbindung kann heiß sein. Werden unmittelbar nach dem Betrieb Arbeiten an der Drehverbindung durchgeführt, besteht die Gefahr der Verbrennung.

-> Motor mindestens 30 min abkühlen lassen.

GEFAHR

Im Rotor der Drehverbindung sind starke Permanentmagnete verbaut. Aufgrund der hohen Anzugskräfte dürfen Gegenstände aus Eisen und Stahl nicht im Nahbereich geführt werden. Es besteht Quetschgefahr!

GEFAHR

Das Magnetfeld der Permagnetmagnete kann bei zu geringem Abstand (< 500 mm) empfindliche Geräte stören bzw. zerstören. Dies gilt insbesondere für implantierte elektromedizinische Geräte (wie Herzschrittmacher), aber auch für Uhren und Messgeräte, Magnetkarten und elektronische Datenträger.

Der Verwender muss auf diese Gefahren so hinweisen, dass diese Hinweise noch aus sicherem Abstand wahrgenommen werden können (z.B. durch Warnschilder). Der Zutritt zum Einsatzort durch Personen, die implantierte elektromedizinische Geräte tragen, muss untersagt werden.

Der Verwender muss sicherstellen, dass während des Betriebs Eingriff oder Zugang durch Personen ausgeschlossen ist.

Sicherheit

3.3 Schutzmaßnahmen

In unmittelbarer Nähe zu den Gefahrstellen ist die Drehverbindung mit Direktantrieb mit Warn- und Verbotsschildern gut sichtbar zu kennzeichnen.

Die nachfolgenden Tabellen zeigen die anzubringenden Schilder mit Ihren Bedeutungen.

Warnschilder

Schild	Bedeutung
4	Warnung vor gefährlicher elektrischer Spannung (D-W008)
	Warnung vor magnetischem Feld (D-W013)
	Warnung vor heißer Oberfläche (D-W026)
	Warnung vor Handverletzung (D-W027)

Verbotsschilder

Schild	Bedeutung
	Mitführen von magnetischen oder elektronischen Datenträgern Verboten (D-P021)
	Verbot für Herzschrittmacher (D-P011)
	Verbot für Personen mit Implantaten aus Metall (D-P016)
	Mitführen von Metallteilen oder Uhren verboten (D-P020)

3.4 Qualifikation des Personals

Ausschließlich ausgebildete Fachkräfte (z.B. Industriemechaniker, Schlosser, Mechatroniker) dürfen Drehverbindungen mit Direktantrieb montieren und warten.

Ausschließlich ausgebildete Elektrofachkräfte (z.B. Elektriker, Mechatroniker) dürfen Drehverbindungen mit Direktantrieb elektrisch anschliessen und in Betrieb nehmen.

4 Montage der Drehverbindung mit Direktantrieb

Montieren Sie keine beschädigten Bauteile.

- Drehverbindung auf die Befestigungsfläche legen und die Befestigungschrauben in die Gewindebohrungen eindrehen.
- Leichtgängigkeit der Schrauben und Lage der Bohrungen prüfen.
- Drehverbindung mit der Anschlusskonstruktion über Kreuz verschrauben und Schrauben mit einem Drehmomentschlüssel gemäß vorgeschriebenem Drehmoment anziehen. (siehe Kapitel 9.5)

5 Inbetriebnahme Direktantrieb

- Die Torquemotoren dürfen nicht direkt ans Netz angeschlossen werden, nur in Verbindung mit einem geeignetem Servoregler. Die Anforderungen an den Servoregler entnehmen Sie bitte den angehängten Motordatenblättern bzw. der produktspezifischen Zeichnung.
- Um den Motor vor Überhitzung zu schützen, aktivieren Sie bitte alle vorhandenen Schutzsysteme:
 - Temperatursensoren (i.d. Regel PTC und PT1000) an den aktiven Motorphasen gemäß Norm IEC60034-11
 - Begrenzung des I2-Wertes, der den Stromdurchlass an den Motor bestimmt

6 Elektrische Anschlüsse

WARNUNG!

Unerwarteter Anlauf kann schwere Verletzungen verursachen.

Vor Arbeiten an der Drehverbindung mit Direktantrieb Energieversorgung abschalten. Alle mechanischen Montagearbeiten müssen vor dem Anschluss abgeschlossen sein. Probebetrieb im nicht eingebauten Zustand ist untersagt. Ausschließlich Elektrofachpersonal darf das Gerät anschließen.

6.1 Steckerbelegung Motor

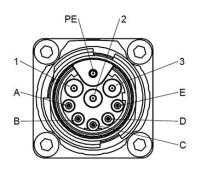


Abb. 01: Steckerbelegung Motor

LTD100

Steckerbelegung Motor Einbaudose 917; M17x1 (9-polig)

Anschlussbelegung

PIN	Signal	PIN	Signal	
1	Phase U	Α	PT1000	
2	Phase V	В	PT1000	
3	Phase W	С	PTC 120°	
PE	Schutzleiter	D	PTC 120°	
		E	Frei	

Steckerbelegung Motor Winkeleinbaudose 923, M23x1 (8-polig)

Anschlussbelegung

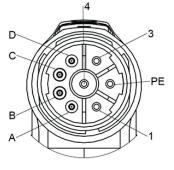


Abb. 02: Steckerbelegung Motor

LTD/CDC kundenspezifisch gemäß Zeichnung

6.2 Steckerbelegung Messsystem

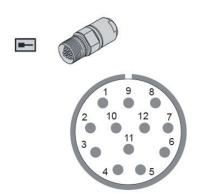
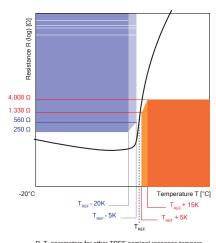


Abb. 03: Steckerbelegung Messsystem

LTD100, LTD215, LTD320, LTD385


Steckerbelegung Messsystem 03S12 12-polige Kupplung M23

Anschlussbelegung

Spannungsversorgung		Inkrer	nentalsignale	Sonstige Signale		
12	Up	5	A+	/	Frei	
2	Sensor Up	6	A-	7	Diag+	
10	0 V	8	B+	9	Diag-	
11	Sensor 0 V	1	B-			
		3	R+			
		4	R-			

LTD/CDC kundenspezifisch gemäß Zeichnung (falls vorhanden)

6.3 Temperatursensoren

R. T. parameters for other TREF nominal response temperature) on request

PTC

PTC-Kaltleiter

Kaltleiter sind Halbleiterwiderstände, die temperaturabhängig sind. Kaltleiter haben einen positiven Temperaturkoeffizienten (TK) und werden deshalb auch PTC-Widerstände genannt (PTC = Positive Temperatur Coefficent).

Abb. 04: PTC

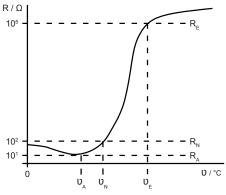


Abb. 05: PTC-Widerstand

Das Diagramm, beschreibt den Widerstandsverlauf in Abhängigkeit der Temperatur eines PTC-Widerstands. Der Widerstandswert beginnt bei der Anfangstemperatur $\upsilon_{_{\rm A}}$ zu steigen. Bis zur Nenntemperatur $\upsilon_{_{\rm N}}$ steigt der Widerstand nichtlinear an. Ab dem Nennwiderstand $R_{_{\rm N}}$ nimmt der Widerstand stark zu. Bis zur Endtemperatur $\upsilon_{_{\rm F}}$ erstreckt sich der Arbeitsbereich des PTC.

Elektrische Anschlüsse

PT1000 Widerstandstabelle für PT1000

Umgebungstemperatur und zugehöriger Sensorwiderstand.

	0	1	2	3	4	5	6	7	8	9	0
-10	960,859	964,778	968,696	972,613	976,529	980,444	984,358	988,27	992,181	996,091	1000
0	1000	1003,908	1007,814	1011,72	1015,624	1019,527	1023,429	1027,33	1031,229	1035,128	1039,025
10	1039,025	1042,921	1046,816	1050,71	1054,603	1058,495	1062,385	1066,274	1070,162	1074,049	1077,935
20	1077,935	1081,82	1085,703	1089,585	1093,467	1097,347	1101,225	1105,103	1108,98	1112,855	1116,729
30	1116,729	1120,602	1124,474	1128,345	1132,215	1136,083	1139,95	1143,817	1147,681	1151,545	1155,408
40	1155,408	1159,27	1163,13	1166,989	1170,847	1174,704	1178,56	1182,414	1186,268	1190,12	1193,971
50	1193,971	1197,821	1201,67	1205,518	1209,364	1213,21	1217,054	1220,897	1224,739	1228,579	1232,419
60	1232,419	1236,257	1240,095	1243,931	1247,766	1251,6	1255,432	1259,264	1263,094	1266,923	1270,751
70	1270,751	1274,578	1278,404	1282,228	1286,052	1289,874	1293,695	1297,515	1301,334	1305,152	1308,968
80	1308,968	1312,783	1316,597	1320,411	1324,222	1328,033	1331,843	1335,651	1339,458	1343,264	1347,069
90	1347,069	1350,873	1354,676	1358,477	1362,277	1366,077	1369,875	1373,671	1377,467	1381,262	1385,055
100	1385,055	1388,847	1392,638	1396,428	1400,217	1404,005	1407,791	1411,576	1415,38	1419,143	1422,925
110	1422,925	1426,706	1430,485	1434,264	1438,041	1441,817	1445,592	1449,366	1453,138	1456,91	1460,68
120	1460,68	1464,449	1468,217	1471,984	1475,75	1479,514	1483,277	1487,04	1490,801	1494,561	1498,319
130	1498,319	1502,077	1505,833	1509,589	1513,343	1517,096	1520,847	1524,598	1528,347	1532,096	1535,843
140	1535,843	1539,589	1543,334	1547,078	1550,82	1554,562	1558,302	1562,041	1565,779	1569,516	1573,251
150	1573,251	1576,986	1580,719	1584,451	1588,182	1591,912	1595,641	1599,368	1603,095	1606,82	1610,544
160	1610,544	1614,267	1617,989	1621,709	1625,429	1629,147	1632,864	1636,58	1640,295	1644,009	1647,721
170	1647,721	1651,433	1655,143	1658,852	1662,56	1666,267	1669,972	1673,677	1677,38	1681,082	1684,783
180	1684,783	1688,483	1692,181	1695,879	1699,575	1703,271	1706,965	1710,658	1714,349	1718,04	1721,729
190	1721,729	1725,418	1729,105	1732,791	1736,475	1740,159	1743,842	1747,523	1751,203	1754,882	1758,56
200	1758,56	1762,237	1765,912	1769,587	1773,26	1776,932	1780,603	1784,273	1787,941	1791,609	1795,275

7 Hinweise zum Betrieb

▲ WARNUNG

WARNUNG!

Sich bewegende Teile können Personen im Gefahrenbereich verletzen.

Vor der ersten Inbetriebnahme sicherstellen, dass alle Teile korrekt montiert wurden und dass keine Personen durch den Anlauf gefährdet werden können.

Sicherheitsabstände festlegen und einhalten.

Schutzeinrichtungen der Maschine/Anlage soweit möglich vor dem Probetrieb installieren.

Vor Ort geltende Sicherheitsregeln/Unfallverhütungsvorschriften für Probebetrieb (soweit vorhanden) beachten. Die starken Permanentmagnete am Rotor ziehen magnetische Teile oder Partikel an, die in der Nähe der Drehverbindung anfallen. Auch treten während des Betriebs zusätzliche elektromagnetische Felder auf.

8 Exzentrische Lasten

Wenn eine exzentrische Last auf die Drehverbindung einwirkt oder einwirken könnte, müssen Sie sicherstellen, dass ein Ausfall der Energieversorgung nicht zu gefährlichen Bewegungen führen kann. Dazu mag es erforderlich sein, Schutzeinrichtungen anzubauen.

Wartung

Wartung

Alle Wartungsarbeiten nur bei abgeschalteter Maschine durchführen. Stellen Sie sicher, dass am Torquemotor keine Spannungen anliegen. Im ungünstigstem Fall kann es zum elektrischen Stromschlag oder zu einem Lichtbogen führen, es besteht Lebensgefahr.

9.1 Sicherheitshinweis zur Wartung

Unsachgemäße Wartungsarbeiten

▲ WARNUNG

WARNUNG!

Verletzungsgefahr durch unsachgemäß ausgeführte Wartungsarbeiten!

- Vor Reinigungs- und Wartungsarbeiten die Energieversorgung des Antriebs abschalten und sicherstellen, dass sich keine Teile gefahrbringend bewegen können.
- Vor Beginn der Arbeiten für ausreichende Montagefreiheit sorgen.
- Auf Ordnung und Sauberkeit am Montageplatz achten!
- Wenn Bauteile entfernt wurden, auf richtige Montage achten, alle Befestigungselemente wieder einbauen und Schrauben-Anziehdrehmomente einhalten.
- Bei der Reinigung des Lagers geeignete Reinigungsmittel verwenden, die kompatibel zur Dichtung sind. Dazu die Hinweise des Reinigungsmittels beachten.
- Vor der Wiederinbetriebnahme Folgendes beachten:
 - Sicherstellen, dass alle Wartungsarbeiten gemäß den Angaben und Hinweisen in der Anleitung durchgeführt und abgeschlossen wurden.
 - Sicherstellen, dass sich keine Personen im Gefahrenbereich aufhalten.
 - Sicherstellen, dass alle Abdeckungen und Sicherheitseinrichtungen installiert sind und ordnungsgemäß funktionieren.

Fehlerhafte Wartung

HINWEIS

HINWEIS!

Sachschaden durch fehlerhafte Wartung

- Drehverbindung halbjährlich auf Korrosion untersuchen.
- Je nach Anwendungsfall (z. B. bei Einfluss durch Vibrationen) die Schraubverbindungen in regelmäßigen Abständen nachziehen.
- Bei Laufgeräuschen des Lagers die Maschine ausschalten und Störungsursachen ermitteln.
- Dichtungen des Lagers in regelmäßigen Abständen überprüfen.

Fehlerhafte Schmierung

HINWEIS

HINWEIS!

Sachschaden am Lager durch unsachgemäße Schmierung!

- Nur vom Hersteller freigegebene Fette verwenden (siehe Kapitel 9.3 "Zugelassene Schmierstoffe").
- Nachschmiermenge und Nachschmierintervalle beachten (siehe Kapitel 9.3 "Nachschmierung").
- Nachschmierung des Lagers nur bei Betriebstemperatur durchführen.

Umweltschutz

An allen Schmierstellen, die mit Schmierstoff versorgt werden, das austretende, verbrauchte oder überschüssige Fett entfernen und nach den gültigen örtlichen Bestimmungen entsorgen.

9.2 Reinigung

Wenn die Maschine/Anlage, in die die Drehverbindung mit Direktantrieb eingebaut ist, gereinigt werden sollen, folgendes beachten:

Lager und Motor sind nicht gegen Eindringen von Feuchtigkeit geschützt. Vor Reinigungsarbeiten mit Flüssigkeiten oder Hochdruckreiniger dafür sorgen, dass die Drehverbindung mit Direktantrieb vor Eindringen von Flüssigkeiten geschützt wird.

9.3 Nachschmierung

Schmiermittel

Zur Langzeitschmierung aufgrund der höheren Altersbeständigkeit vollsynthetische Schmierstoffe verwenden. Franke empfiehlt das synthetische Langzeitfett Klüber ISOFLEX TOPAS NCA52.

HINWEIS

HINWEIS!

Sachschaden durch unsachgemäße Schmierung!

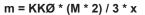
- Sicherstellen, dass sich die Schmierstoffe für den jeweiligen Einsatzfall und für die eingesetzten Materialien (z. B. Wälzlagerkäfige oder Dichtungen) eignen.
- Bei der Vermischung von Schmierstoffen die Verträglichkeit der Schmierstoffsorten berücksichtigen. Insbesondere die Grundölart, Verdicker, Grundölviskosität und NGLI-Klasse beachten. Diese Fragen müssen vorab mit dem Schmierstoffhersteller geklärt werden, besonders wenn das Lager unter extremen Betriebsbedingungen eingesetzt wird.

Wartung

Nachschmieren des Lagers

Abb. 06: Nachschmieren

Die Nachschmierfrist ist anwendungsspezifisch. Die nachfolgende Tabelle zeigt Anhaltswerte.


1. Nachschmieren unter Betriebstemperatur des Lagers durchführen.

2. Beim Nachschmieren das Lager drehen.

Umfangsgeschwindigkeit in [m/s]	Nachschmierintervall in (h)
0 to < 3	5000
3 to < 5	1000
5 to < 8	600
8 to < 10	200

3. Wenn die Nachschmierhäufigkeit ermittelt ist, die Nachschmiermenge anhand nachfolgender Formel berechnen.

Nachschmiermenge:

m = Nachschmiermenge in Gramm

KKØ = Kugelkranzdurchmesser

M = Drahtbetthöhe in Millimetern

x = Faktor x in mm-1 gemäß Tabelle für die Nachschmiermenge

LTD/CDC kundenspezifisch: Nachschmierung ist der Zeichnung zu entnehmen

Nachschmierung	x in [mm ⁻¹]
Wöchentlich	0.002
Monatlich	0.003
Jährlich	0.004
Alle 2-3 Jahre	0.005

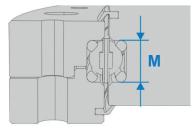


Abb. 07: Drahtbetthöhe

9.4 Verschraubungen nachziehen

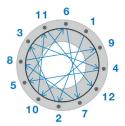
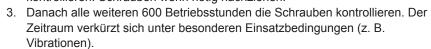


Abb. 08: Schrauben über Kreuz anziehen


Die Auswahl der Befestigungsschrauben wird durch den Konstrukteur

1. Schrauben über Kreuz mit einem Drehmomentschlüssel gemäß

vorgeschriebenen Anzugsdrehmomenten anziehen.

2. Schrauben nach etwa 100 Betriebsstunden auf Setzungserscheinungen kontrollieren. Schrauben wenn nötig nachziehen.

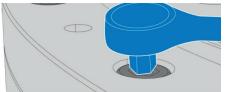


Abb. 09: Drehmomentschlüssel verwenden

9.5 Anzugsmomente Schrauben

Schraubengröße	Anzugsmoment in [NM] Festigkeitsklasse 8.8	Anzugsmoment in [Nm] Festigkeitsklasse 12.9
M6	10	17
M8	25	41
M10	49	83
M12	86	146
M16	215	363

9.6 Wartung Motor

Direktantriebe sind aufgrund ihres Aufbaus und ihrer Funktionsweise in der Regel verschleißfrei.

Folgende Wartungsarbeiten sind notwendig:

- Freigängigkeit, Leichtgängigkeit der Lagerung regelmäßig überprüfen.
- Motorraum von Spänen freihalten.
- Stromaufnahme regelmäßig prüfen und mit erster Einstellung vergleichen.
- Stromkabel regelmäßig auf festen Sitz und Beschädigungen prüfen.

Die aufgeführten Punkte sollten mindestens alle 2000 Betriebsstunden überprüft werden.

Erklärung für den Einbau einer unvollständigen Maschine

Im Sinne der Richtlinie 2006/42/EG Anhang II Teil 1 B Hersteller Name und Adresse:

Franke GmbH Obere Bahnstraße 64 D-73431 Aalen

Hiermit erklären wir, dass die unvollständige Maschine Drehverbindung mit Direktantrieb Typ LTD/CDC soweit es vom Lieferumfang her möglich ist, den grundlegenden Anforderungen der folgenden Richtlinien entspricht. (Welche Anforderungen erfüllt wurden, siehe unten)

- Maschinenrichtlinien 2006/42/EG
- EMV- Richtlinien 2004/108/EG

Angewandte harmonisierte Normen, deren Fundstellen im Amtsblatt der EU veröffentlicht worden sind:

EN ISO 12100-11/2010 Sicherheit von Maschinen - Allgemeine Gestaltungsleitsätze - Risikobeurteilung und Risikominimierung.

Ferner erklären wir, dass die speziellen technischen Unterlagen für diese unvollständige Maschine nach Anhang VII Teil B erstellt wurden und verpflichten uns, diese auf Verlangen den Marktaufsichtsbehörden über unsere Dokumentationsabteilung zu übermitteln.

Die Inbetriebnahme der unvollständigen Maschine wird so lange untersagt, bis die unvollständige Maschine in eine Maschine eingebaut wurde, die den Bestimmungen der EG-Maschinenrichtlinie entspricht und für die eine EG-Konformitätserklärung gemäß Anhang II 1 A vorliegt.

Bevollmächtigter für die Zusammenstellung der technischen Unterlagen ist der Unterzeichner dieser Erklärung.

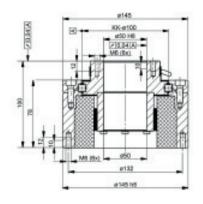
Diese Einbauerklärung wurde ausgestellt in/am/von:

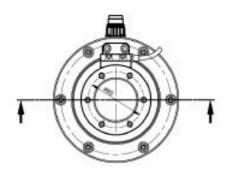
Aalen, 16.11.2020

Jörg Engelhaaf (Technischer Leiter)

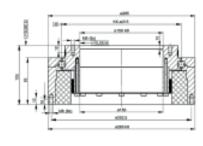
10.1 Anhang zur Erklärung für den Einbau einer unvollständigen Maschine

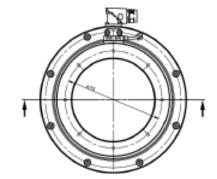
Anforderungen des Anhangs I von 2006/42/EG, die eingehalten wurden. Die Nummern beziehen sich auf die Abschnitte von Anhang I:

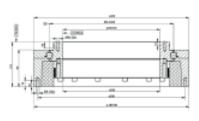

- 1.1.2 Grundsätze für die Integration der Sicherheit
- 1.1.3 Materialien und Produkte
- 1.1.5 Konsturktion der Maschine im Hinblick auf die Handhabung
- 1.3.1 Risiko des Verlusts der Standsicherheit
- 1.3.9 Risiko unkontrollierter Bewegungen
- 1.5.1 Elektrische Energieversorgung
- 1.5.5 Extreme Temperaturen
- 1.5.10 Strahlung
- Warnung vor Restrisiken 1.7.2
- 1.7.4.2 Inhalt der Betriebsanleitung (teilweise)

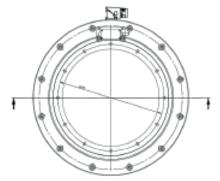

Anhang

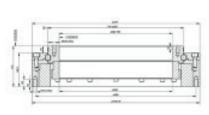
11 Anhang

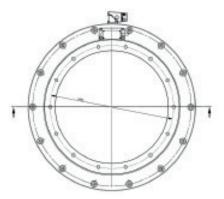

Datentabellen


LTD100




LTD215




LTD320

LTD385

Anhang

Name	KK Ø	Tragzahlen kN				Gewicht kg	BestNr.
		C _{0a}	C _{0r}	Ca	C _r		
LTD-100	100	46	22	17	14	8	609818
LTD-215	215	128	60	26	22	21	609885
LTD-320	320	382	180	45	39	44	609886
LTD-385	385	458	216	48	41	57	609913

Leistungsdaten			LTD-100	LTD-215	LTD-320	LTD-385
Nenndaten (Luftkühlung)						
Nennmoment	M _{NennLk}	Nm	4,5	26,4	77	118
Nennstrom	NennLk	Aeff	1,8	3,1	4,3	4,3
Nenndrehzahl	NennLk	U/min	2140	640	299	193
abgegebene Wellenleistung	P _{NennLk}	W	1005	1770	2409	2386
Wicklungsverluste ¹	PV _{NennLk}	W	54	131	230	309
Gesamtverluste ²	PV _{NennLk}	W	96	179	295	357
Stillstands-/ Haltemoment	M _{HaltLk}	Nm	3,2	18,7	54	83
Stillstands-/ Haltestrom	l _{HaltLk}	A _{eff}	1,2	2,2	3	3
Daten bei Spitzenlast						
Spitzenmoment	M _{Peak}	Nm	16	105	329	522
Spitzenstrom	IPeak	Aeff	7	12.8	21,6	21.7
Drehzahl bei Spitzenmoment	n Peak	U/min	1130	320	126	74
abgegeben Wellenleistung	MPeak	W	1897	3526	4343	4049
Wicklungsverluste ¹	Peak	W	863	2236	5886	7876
Gesamtverluste ²	PvPeak	W	877	2253	5904	7889
Gesamvenuste	1 VPeak	VV	011	2200	3304	7009
Leistungsübersicht						
Drehmomentkonstante	kt	Nm/A _{eff}	2,549	8,51	18,037	27,449
		V _{eff} /(rad/s)	1,577	5,2	11,094	16,694
Spannungskonstante (Phase - Phase)	ke	V _{eff} /(U/min)	0,165	0,545	1,162	1,748
Motorkonstante	km	Nm/vW	0,459	1,973	4,483	6,25
Leerlaufdrehzahl	n _{Leer}	U/min	2390	727	340	226
max. zul. Drehzahl (Feldschwächung)	n _{max}	U/min	-	-	-	-
max. Frequenz (Leerlauf/Feldschw.)	f _{max}	Hz	398	254	159	124
Zwischenkreisspannung	UZk	VDC	560	560	560	560
Ø Widerstand pro Phase (nur Wicklung)	RPh20	Ω	4,419	3,457	3,206	4,235
Ø Induktion pro Phase (nur Wicklung)	LPh	mH	21,727	19,532	21,071	28,049
elektr. Zeitkonstante t=L/R	Tel	ms	4,92	5,65	6,57	6,62
Polpaarzahl	n		10	21	28	33
Schaltung			Stern	Stern	Stern	Stern
Messsystem						
Messverfahren				inkrement	ell	
Referenzmarke				1 Referenzm	arke	
Messprinzip				induktiv		
Schnittstelle				1 Vss		
Kabellänge				1 m		
Teilungsperiode				1000 µn	1	
Strichzahl			256	640	938	1200
Vervielfachung			10-fach	10-fach	10-fach	10-fach
Anzahl der Signalperioden			2560	6400	9380	12000
Positionsabweichung innerhalb einer Teilungs	speriode		±11"	±4,5"	±3"	±2,5"
Teilungsgenauigkeit (±10µm Bogenlänge)	Sporiodo		±51"	±4,5 ±20"	±14"	±2,5 ±11"
max. Abtastfrequenz			±01	40 kHz	±14	±11
Spannungsversorgung				4V bis 7V	nc .	
oparirul igoverou gurig				47 DIS / V		

Anhang

Anmerkungen

¹Wicklungsverluste sind bezogen auf eine Spulentemperatur von 100°C. ²Die Gesamtverluste setzen sich zusammen aus: Wicklungsverluste; Statoreisenverluste; Rotorverluste; Berechnung der Gesamtverluste: Wicklungsverluste + Statoreisenverluste (bei Drehzahl X) + Rotorverluste (bei Drehzahl X)

Achten Sie darauf, dass Ihr Regler den Motornenn- und Spitzenstrom bereitstel-

Eine Anpassung der Drehzahl und Zwischenkreisspannung kann nach Rücksprache erfolgen.

Die im Datenblatt angegebenen Nenndaten gelten für eine Umgebungs-/Kühlmitteltemperatur von 20°C.

Die Drehmomente sind angegeben ohne Berücksichtigung der Reibverluste durch Lagerung oder Dichtungen.

Da die genaue Betriebsart auch von der thermischen Anbindung des Motors abhängt, muss das eingebaute Temperaturuüberwachungssystem ausgewertet und berücksichtigt werden. Dennoch gilt zu beachten, dass die Thermosensoren nicht die exakte Wicklungstemperatur anzeigen und diese durch thermische Kapazitäten um bis zu 20 K höher sein kann. Trotz einer elektrischen Isolation der Sensoren gegenüber der Wicklung dürfen die Sensoren nur uüber eine zusätzliche galvanische Trennung an den Regler/die Steuerung angeschlossen werden.